Data-Driven Online to Batch Conversions
نویسندگان
چکیده
Online learning algorithms are typically fast, memory efficient, and simple to implement. However, many common learning problems fit more naturally in the batch learning setting. The power of online learning algorithms can be exploited in batch settings by using online-to-batch conversions, techniques which build a new batch algorithm from an existing online algorithm. We first give a unified overview of three existing online-to-batch conversion techniques which do not use training data in the conversion process. We then build upon these data-independent conversions to derive and analyze data-driven conversions. Our conversions find hypotheses with a small risk by explicitly minimizing datadependent generalization bounds. We experimentally demonstrate the usefulness of our approach, and in particular show that the data-driven conversions consistently outperform the data-independent conversions.
منابع مشابه
Online to Batch Conversions
We have recently been studying the case where have a training set T generated from an underlying distribution and our goal is to find some good hypothesis, with respect to the true underlying distribution, using the training set T . We now examine how to use online learning algorithms (which work on individual, arbitrary sequences) in a stochastic setting. Let us consider the training set T as ...
متن کاملPeer-Assessment and Student-Driven Negotiation of Meaning: Two Ingredients for Creating Social Presence in Online EFL Social Contexts
With the current availability of state-of-the-art technology, particularly the Internet, people have expanded their channels of communication. This has similarly led to many people utilizing technology to learn second/foreign languages. Nevertheless, many current computer-assisted language learning (CALL) programs still appear to be lacking in interactivity and what is termed social presence, w...
متن کاملEnsemble Methods for Structured Prediction
We present a series of learning algorithms and theoretical guarantees for designing accurate ensembles of structured prediction tasks. This includes several randomized and deterministic algorithms devised by converting on-line learning algorithms to batch ones, and a boosting-style algorithm applicable in the context of structured prediction with a large number of labels. We give a detailed stu...
متن کاملConcordance-Based Data-Driven Learning Activities and Learning English Phrasal Verbs in EFL Classrooms
In spite of the highly beneficial applications of corpus linguistics in language pedagogy, it has not found its way into mainstream EFL. The major reasons seem to be the teachers’ lack of training and the unavailability of resources, especially computers in language classes. Phrasal verbs have been shown to be a problematic area of learning English as a foreign language due to their semantic op...
متن کاملOnline Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کامل